meili 发表于 2022-10-14 16:00:55

2023年人教版初一上册数学知识点总结:有理数

<p>人教版七年级数学上册期末总复习</p><p>第一章有理数</p><p>1.有理数:</p><p>(1)凡能写成 形式的数,都是有理数,整数和分数统称有理数.</p><p>注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数; 不是有理数;</p><p>(2)有理数的分类: ① ②</p><p>(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;</p><p>(4)自然数 0和正整数; a0 a是正数; a0 a是负数;</p><p>a≥0 a是正数或0 a是非负数; a≤ 0 a是负数或0 a是非正数.</p><p>2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.</p><p>3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;</p><p>(3)相反数的和为0 a+b=0 a、b互为相反数.</p><p>(4)相反数的商为-1.</p><p>(5)相反数的绝对值相等</p><p>4.绝对值:</p><p>(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;</p><p>注意:绝对值的意义是数轴上表示某数的点离开原点的距离;</p><p>(2) 绝对值可表示为: 或 ;</p><p>(3) ; ;</p><p>(4) |a|是重要的非负数,即|a|≥0;</p><p>5.有理数比大小:</p><p>(1)正数永远比0大,负数永远比0小;</p><p>(2)正数大于一切负数;</p><p>(3)两个负数比较,绝对值大的反而小;</p><p>(4)数轴上的两个数,右边的数总比左边的数大;</p><p>(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。</p><p>6.倒数:乘积为1的两个数互为倒数;</p><p>注意:0没有倒数; 若ab=1 a、b互为倒数; 若ab=-1 a、b互为负倒数.</p><p>等于本身的数汇总:</p><p>相反数等于本身的数:0</p><p>倒数等于本身的数:1,-1</p><p>绝对值等于本身的数:正数和0</p><p>平方等于本身的数:0,1</p><p>立方等于本身的数:0,1,-1.</p><p>7. 有理数加法法则:</p><p>(1)同号两数相加,取相同的符号,并把绝对值相加;</p><p>(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;</p><p>(3)一个数与0相加,仍得这个数.</p><p>8.有理数加法的运算律:</p><p>(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).</p><p>9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).</p><p>10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;</p><p>(2)任何数同零相乘都得零;</p><p>(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。</p><p>11 有理数乘法的运算律:</p><p>(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);</p><p>(3)乘法的分配律:a(b+c)=ab+ac .(简便运算)</p><p>12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .</p><p>13.有理数乘方的法则:(1)正数的任何次幂都是正数;</p><p>(2)负数的奇次幂是负数;负数的偶次幂是正数;</p><p>14.乘方的定义:(1)求相同因式积的运算,叫做乘方;</p><p>(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;</p><p>(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 a=0,b=0;</p><p>(4)据规律 底数的小数点移动一位,平方数的小数点移动二位.</p><p>15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.</p><p>16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.</p><p>17.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。</p><p>18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。</p><p>第二章 整式的加减</p><p>1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。</p><p>2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;</p><p>单项式中所有字母指数的和,叫单项式的次数.</p><p>3.多项式:几个单项式的和叫多项式.</p><p>4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;</p><p>5. .</p><p>6.同类项: 所含字母相同,并且相同字母的指数也相同的单项式是同类项.</p><p>7.合并同类项法则: 系数相加,字母与字母的指数不变.</p><p>8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号; 若括号前边是“-”号,括号里的各项都要变号.</p><p>9.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并)</p><p>10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).</p><p>第三章 一元一次方程</p><p>1.等式:用“=”号连接而成的式子叫等式.</p><p>2.等式的性质:</p><p>等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;</p><p>等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.</p><p>3.方程:含未知数的等式,叫方程.</p><p>4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!</p><p>5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.</p><p>6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.</p><p>7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).</p><p>8.一元一次方程解法的一般步骤:</p><p>化简方程----------分数基本性质</p><p>去 分母----------同乘(不漏乘)最简公分母</p><p>去 括号----------注意符号变化</p><p>移 项----------变号(留下靠前)</p><p>合并同类项--------合并后符号</p><p>系数化为1---------除前面</p><p>10.列一元一次方程解应用题:</p><p>(1)读题分析法:………… 多用于“和,差,倍,分问题”</p><p>仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.</p><p>(2)画图分析法: ………… 多用于“行程问题”</p><p>利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.</p><p>11.列方程解应用题的常用公式:</p><p>(1)行程问题: 距离=速度 时间 ;</p><p>(2)工程问题: 工作量=工效 工时 ;</p><p>工程问题常用等量关系: 先做的+后做的=完成量</p><p>(3)顺水逆水问题:</p><p>顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;</p><p>顺水逆水问题常用等量关系: 顺水路程=逆水路程</p><p>(4)商品利润问题: 售价=定价 , ;</p><p>利润问题常用等量关系: 售价-进价=利润</p><p>(5)配套问题:</p><p>(6)分配问题</p><p>第四章 图形初步认识</p><p>(一)多姿多彩的图形</p><p>立体图形:棱柱、棱锥、圆柱、圆锥、球等.</p><p>1、几何图形</p><p>平面图形:三角形、四边形、圆等.</p><p>主(正)视图---------从正面看</p><p>2、几何体的三视图 侧(左、右)视图-----从左(右)边看</p><p>俯视图---------------从上面看</p><p>(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.</p><p>(2)能根据三视图描述基本几何体或实物原型.</p><p>3、立体图形的平面展开图</p><p>(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.</p><p>(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.</p><p>4、点、线、面、体</p><p>(1)几何图形的组成</p><p>点:线和线相交的地方是点,它是几何图形最基本的图形.</p><p>线:面和面相交的地方是线,分为直线和曲线.</p><p>面:包围着体的是面,分为平面和曲面.</p><p>体:几何体也简称体.</p><p>(2)点动成线,线动成面,面动成体.</p><p>(二)直线、射线、线段</p><p>1、基本概念</p><p>图形 直线 射线 线段</p><p>端点个数 无 一个 两个</p><p>表示法 直线a</p><p>直线AB(BA) 射线AB 线段a</p><p>线段AB(BA)</p><p>作法叙述 作直线AB;</p><p>作直线a 作射线AB 作线段a;</p><p>作线段AB;</p><p>连接AB</p><p>延长叙述 不能延长 反向延长射线AB 延长线段AB;</p><p>反向延长线段BA</p><p>2、直线的性质</p><p>经过两点有一条直线,并且只有一条直线.</p><p>简单地:两点确定一条直线.</p><p>3、画一条线段等于已知线段</p><p>(1)度量法</p><p>(2)用尺规作图法</p><p>4、线段的大小比较方法</p><p>(1)度量法</p><p>(2)叠合法</p><p>5、线段的中点(二等分点)、三等分点、四等分点等</p><p>定义:把一条线段平均分成两条相等线段的点.</p><p>图形:</p><p>A M B</p><p>符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.</p><p>6、线段的性质</p><p>两点的所有连线中,线段最短.简单地:两点之间,线段最短.</p><p>7、两点的距离</p><p>连接两点的线段长度叫做两点的距离.</p><p>8、点与直线的位置关系</p><p>(1)点在直线上 (2)点在直线外.</p><p>(三)角</p><p>1、角:由公共端点的两条射线所组成的图形叫做角.</p><p>2、角的表示法(四种):</p><p>3、角的度量单位及换算</p><p>4、角的分类</p><p>∠β 锐角 直角 钝角 平角 周角</p><p>范围 0∠β90° ∠β=90° 90°∠β180° ∠β=180° ∠β=360°</p><p>5、角的比较方法</p><p>(1)度量法</p><p>(2)叠合法</p><p>6、角的和、差、倍、分及其近似值</p><p>7、画一个角等于已知角</p><p>(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.</p><p>(2)借助量角器能画出给定度数的角.</p><p>(3)用尺规作图法.</p><p>8、角的平线线</p><p>定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.</p><p>图形:</p><p>符号:</p><p>9、互余、互补</p><p>(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.</p><p>(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.</p><p>(3)余(补)角的性质:等角的补(余)角相等.</p><p>10、方向角</p><p>(1)正方向</p><p>(2)北(南)偏东(西)方向</p><p>(3)东(西)北(南)方向</p><p>更多中考信息》》》</p>
页: [1]
查看完整版本: 2023年人教版初一上册数学知识点总结:有理数