(精品)中学生数学记忆知识点口诀表
<p>中学生在学校里的主要任务是学习。学习是中学生的主要活动,除了学习之外,学生也要阅读一些,数学网提供了中学生数学记忆知识点口诀表,以备借鉴。</p><p>解比例</p><p>外项积等内项积,列出方程并解之。</p><p>求比值</p><p>由已知去求比值,多种途径可利用。</p><p>活用比例七性质,变量替换也走红。</p><p>消元也是好办法,殊途同归会变通。</p><p>正比例与反比例</p><p>商定变量成正比,积定变量成反比。</p><p>正比例与反比例</p><p>变化过程商一定,两个变量成正比。</p><p>变化过程积一定,两个变量成反比。</p><p>判断四数成比例</p><p>四数是否成比例,递增递减先排序。</p><p>两端积等中间积,四数一定成比例。</p><p>判断四式成比例</p><p>四式是否成比例,生或降幂先排序。</p><p>两端积等中间积,四式便可成比例。</p><p>比例中项</p><p>成比例的四项中,外项相同会遇到。</p><p>有时内项会相同,比例中项少不了。</p><p>比例中项很重要,多种场合会碰到。</p><p>成比例的四项中,外项相同有不少。</p><p>有时内项会相同,比例中项出现了。</p><p>同数平方等异积,比例中项无处逃。</p><p>根式与无理式</p><p>表示方根代数式,都可称其为根式。</p><p>根式异于无理式,被开方式无限制。</p><p>被开方式有字母,才能称为无理式。</p><p>无理式都是根式,区分它们有标志。</p><p>被开方式有字母,又可称为无理式。</p><p>求定义域</p><p>求定义域有讲究,四项原则须留意。</p><p>负数不能开平方,分母为零无意义。</p><p>指是分数底正数,数零没有零次幂。</p><p>限制条件不唯一,满足多个不等式。</p><p>求定义域要过关,四项原则须注意。</p><p>负数不能开平方,分母为零无意义。</p><p>分数指数底正数,数零没有零次幂。</p><p>限制条件不唯一,不等式组求解集。</p><p>解一元一次不等式</p><p>先去分母再括号,移项合并同类项。</p><p>系数化1有讲究,同乘除负要变向。</p><p>先去分母再括号,移项别忘要变号。</p><p>同类各项去合并,系数化1注意了。</p><p>同乘除正无防碍,同乘除负也变号。</p><p>解一元一次不等式组</p><p>大于头来小于尾,大小不一中间找。</p><p>大大小小没有解,四种情况全来了。</p><p>同向取两边,异向取中间。</p><p>中间无元素,无解便出现。</p><p>幼儿园小鬼当家,(同小相对取较小)</p><p>敬老院以老为荣,(同大就要取较大)</p><p>军营里没老没少。(大小小大就是它)</p><p>大大小小解集空。(小小大大哪有哇)</p><p>解一元二次不等式</p><p>首先化成一般式,构造函数第二站。</p><p>判别式值若非负,曲线横轴有交点。</p><p>a正开口它向上,大于零则取两边。</p><p>代数式若小于零,解集交点数之间。</p><p>方程若无实数根,口上大零解为全。</p><p>小于零将没有解,开口向下正相反。</p><p>用平方差公式因式分解</p><p>异号两个平方项,因式分解有办法。</p><p>两底和乘两底差,分解结果就是它。</p><p>用完全平方公式因式分解</p><p>两平方项在两端,底积2倍在中部。</p><p>同正两底和平方,全负和方相反数。</p><p>分成两底差平方,方正倍积要为负。</p><p>两边为负中间正,底差平方相反数。</p><p>一平方又一平方,底积2倍在中路。</p><p>三正两底和平方,全负和方相反数。</p><p>分成两底差平方,两端为正倍积负。</p><p>两边若负中间正,底差平方相反数。</p><p>用公式法解一元二次方程</p><p>要用公式解方程,首先化成一般式。</p><p>调整系数随其后,使其成为最简比。</p><p>确定参数abc,计算方程判别式。</p><p>判别式值与零比,有无实根便得知。</p><p>有实根可套公式,没有实根要告之。</p><p>用常规配方法解一元二次方程</p><p>左未右已先分离,二系化1是其次。</p><p>一系折半再平方,两边同加没问题。</p><p>左边分解右合并,直接开方去解题。</p><p>该种解法叫配方,解方程时多练习。</p><p>用间接配方法解一元二次方程</p><p>已知未知先分离,因式分解是其次。</p><p>调整系数等互反,和差积套恒等式。</p><p>完全平方等常数,间接配方显优势</p><p>【注】恒等式</p><p>解一元二次方程</p><p>方程没有一次项,直接开方最理想。</p><p>如果缺少常数项,因式分解没商量。</p><p>b、c相等都为零,等根是零不要忘。</p><p>b、c同时不为零,因式分解或配方,</p><p>也可直接套公式,因题而异择良方。</p><p>正比例函数的鉴别</p><p>判断正比例函数,检验当分两步走。</p><p>一量表示另一量,有没有。</p><p>若有再去看取值,全体实数都需要。</p><p>区分正比例函数,衡量可分两步走。</p><p>一量表示另一量,是与否。</p><p>若有还要看取值,全体实数都要有。</p><p>正比例函数的图象与性质</p><p>正比函数图直线,经过和原点。</p><p>K正一三负二四,变化趋势记心间。</p><p>K正左低右边高,同大同小向爬山。</p><p>K负左高右边低,一大另小下山峦。</p><p>一次函数</p><p>一次函数图直线,经过点。</p><p>K正左低右边高,越走越高向爬山。</p><p>K负左高右边低,越来越低很明显。</p><p>K称斜率b截距,截距为零变正函。</p><p>反比例函数</p><p>反比函数双曲线,经过点。</p><p>K正一三负二四,两轴是它渐近线。</p><p>K正左高右边低,一三象限滑下山。</p><p>K负左低右边高,二四象限如爬山。</p><p>二次函数</p><p>二次方程零换y,二次函数便出现。</p><p>全体实数定义域,图像叫做抛物线。</p><p>抛物线有对称轴,两边单调正相反。</p><p>A定开口及大小,线轴交点叫顶点。</p><p>顶点非高即最低。上低下高很显眼。</p><p>如果要画抛物线,平移也可去描点,</p><p>提取配方定顶点,两条途径再挑选。</p><p>列表描点后连线,平移规律记心间。</p><p>左加右减括号内,号外上加下要减。</p><p>二次方程零换y,就得到二次函数。</p><p>图像叫做抛物线,定义域全体实数。</p><p>A定开口及大小,开口向上是正数。</p><p>绝对值大开口小,开口向下A负数。</p><p>抛物线有对称轴,增减特性可看图。</p><p>线轴交点叫顶点,顶点纵标最值出。</p><p>如果要画抛物线,描点平移两条路。</p><p>提取配方定顶点,平移描点皆成图。</p><p>列表描点后连线,三点大致定全图。</p><p>若要平移也不难,先画基础抛物线,</p><p>顶点移到新位置,开口大小随基础。</p><p>【注】基础抛物线</p><p>以上就是数学网为大家提供的中学生数学记忆知识点口诀表,.大家仔细阅读了吗?加油哦!</p>
页:
[1]