meili 发表于 2022-10-14 15:27:33

二次函数知识点归纳:人教版八年级上册数学期中考试

<p>知识点对朋友们的学习非常重要,大家一定要认真掌握,数学网为大家整理了二次函数知识点归纳:人教版八年级上册数学期中考试,让我们一起学习,一起进步吧!</p><p>1.二次函数</p><p>如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数.</p><p>几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).</p><p>2.二次函数的图象</p><p>二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线.</p><p>由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象.</p><p>3.二次函数的性质</p><p>二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:</p><p>(1)抛物线y=ax2+bx+c的顶点是 ,对称轴是直线 ,顶点必在对称轴上;</p><p>(2)若a0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的任意一点(x,y),当x 时,y随x的增大而减小;当x 时,y随x的增大而增大;当x= ,y有最小值 ;</p><p>若a0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任意一点(x,y),当x ,y随x的增大而增大;当 时,y随x的增大而减小;当x= 时,y有最大值 ;</p><p>(3)抛物线y=ax2+bx+c与y轴的交点为(0,c);</p><p>(4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+bx+c与x轴交点的情况:</p><p>当=b2-4ac0,抛物线y=ax2+bx+c与x轴有两个不同的公共点,它们的坐标分别是 和 ,这两点的距离为 ;当=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点 ;当0时,抛物线y=ax2+bx+c与x轴没有公共点.</p><p>4.抛物线的平移</p><p>抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定.</p><p>通过对二次函数知识点归纳:人教版八年级上册数学期中考试的学习,是否已经掌握了本文知识点,更多参考资料尽在数学网!</p>
页: [1]
查看完整版本: 二次函数知识点归纳:人教版八年级上册数学期中考试