【能被2023784整除的数的特点】
<p>问题:【能被2023784整除的数的特点】<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">蔡英的回答:<div class="content-b">网友采纳 (1)1与0的特性: 1是任何整数的约数,即对于任何整数a,总有1|a. 0是任何非零整数的倍数,a≠0,a为整数,则a|0. (2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除. (3)若一个整数的数字和能被3整除,则这个整数能被3整除. (4)若一个整数的末尾两位数能被4整除,则这个数能被4整除. (5)若一个整数的末位是0或5,则这个数能被5整除. (6)若一个整数能被2和3整除,则这个数能被6整除. (7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除.如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止.例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推. (8)若一个整数的未尾三位数能被8整除,则这个数能被8整除. (9)若一个整数的数字和能被9整除,则这个整数能被9整除. (10)若一个整数的末位是0,则这个数能被10整除. (11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除.11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1! (12)若一个整数能被3和4整除,则这个数能被12整除. (13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除.如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止. (14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除.如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止. (15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除.如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止. (16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除. (17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除. (18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除
页:
[1]