meili 发表于 2022-10-27 16:04:59

已知sinα=asinβ,tanα=btanβ,α为锐角,求证:(cosα)^2=(a^2-1)/(b^2-1).

<p>问题:已知sinα=asinβ,tanα=btanβ,α为锐角,求证:(cosα)^2=(a^2-1)/(b^2-1).
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">何佩琨的回答:<div class="content-b">网友采纳  (sinβ)^2=(sinα)^2/a^2,(cosβ)^2=1-(sinβ)^2=/a^2.  (tanβ)^2=(sinα)^2/.  (tanα)^2=b^2*(tanβ)^2=b^2(sinα)^2/.  1/(cosα)^2=b^2/.  b^2(cosα)^2=a^2-1+(cosα)^2.  (cosα)^2=(a^2-1)/(b^2-1).
页: [1]
查看完整版本: 已知sinα=asinβ,tanα=btanβ,α为锐角,求证:(cosα)^2=(a^2-1)/(b^2-1).