meili 发表于 2022-10-27 16:04:47

已知函数F(x)=根号[(1-t)/(1+t)],g(x)=cosx*f(sinx)+sinx*f(cosx)(1)将函数g(x)化简成Asin(wx+a)+B(Agt;0,wgt;0,a∈〔0,2π〕)的形式(2)求g(x)的值域a∈【0,2π】x∈[0,17π/12]f(x)改为f(t)

<p>问题:已知函数F(x)=根号[(1-t)/(1+t)],g(x)=cosx*f(sinx)+sinx*f(cosx)(1)将函数g(x)化简成Asin(wx+a)+B(Agt;0,wgt;0,a∈〔0,2π〕)的形式(2)求g(x)的值域a∈【0,2π】x∈f(x)改为f(t)
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">葛恩顺的回答:<div class="content-b">网友采纳  (1)f(t)=√[(1-t)/(1+t)]  f(sinx)=√[(1-sinx)/(1+sinx)]  f(cosx)=√[(1-cosx)/(1+cosx)]  g(x)=cosx*f(sinx)+sinx*f(cosx)  =cosx*√[(1-sinx)/(1+sinx)]+sinx*√[(1-cosx)/(1+cosx)]  =√[((cosx)^2*(1-sinx))/(1+sinx)]+  √[((sinx)^2*(1-cosx))/(1+cosx)]  =√[((1-(sinx)^2)*(1-sinx))/(1+sinx)]+  √[((1-(cosx)^2)*(1-cosx))/(1+cosx)]  =√[((1+sinx)*(1-sinx)*(1-sinx))/(1+sinx)]+  √[((1+cosx)*(1-cosx)*(1-cosx))/(1+cosx)]  =√[(1-sinx)^2]+√[(1-cosx)^2]  =1-sinx+1-cosx  A>0,w>0,a∈【0,2π】  g(x)=2-sinx-cosx  =√2sin(x-3π/4)+2  (2)由-π/2+2kπ
页: [1]
查看完整版本: 已知函数F(x)=根号[(1-t)/(1+t)],g(x)=cosx*f(sinx)+sinx*f(cosx)(1)将函数g(x)化简成Asin(wx+a)+B(Agt;0,wgt;0,a∈〔0,2π〕)的形式(2)求g(x)的值域a∈【0,2π】x∈[0,17π/12]f(x)改为f(t)