【已知:如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,点D是△ABC内的一点,且AD=AC,若∠DAC=30°,试探究BD与CD的数量关系并加以证明.】
<p>问题:【已知:如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,点D是△ABC内的一点,且AD=AC,若∠DAC=30°,试探究BD与CD的数量关系并加以证明.】<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">方亮的回答:<div class="content-b">网友采纳 BD=CD.证明:作BE⊥BC,AE⊥AC,两线相交于点E,∵△ABC是等腰直角三角形,即AC=BC,∴四边形AEBC是正方形,∵∠DAC=30°,∴∠DAE=60°,∵AD=AC,∴AD=AE,∴△AED是等边三角形,∴∠AED=60°,∴∠DEB=30°,在...
页:
[1]