【已知函数f(x)=2cos(X)sin(X+π/3)-(根号3)(SINX)平方+sinXcosX已知4sinAsinB=34cosAcosB=1,求(1-co4A)(1-cos4B)的值.已知sinX+sinY=1/3,求u=sinX-sin^2Y的最大值和最小值】
<p>问题:【已知函数f(x)=2cos(X)sin(X+π/3)-(根号3)(SINX)平方+sinXcosX已知4sinAsinB=34cosAcosB=1,求(1-co4A)(1-cos4B)的值.已知sinX+sinY=1/3,求u=sinX-sin^2Y的最大值和最小值】<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">李安波的回答:<div class="content-b">网友采纳 f(x)=2cosx·sin(x+π/3)-√3sin²x+sinx·cosx =2cosx·(sinx·cosπ/3+sinπ/3·cosx)-√3sin²x+sinx·cosx =cosx·sinx+√3cos²x-√3sin²+sinx·cosx =√3(cos²x-sin²x)+2·sinx·cosx =√3cos2x-sin2x =2sin(2x+π/3) ①最小正周期T=2π/2=π ②f(x)取得最大值时,2x+π/3=π/2+2kπ(k∈Z) 解得:x=kπ+(π/12)(k∈Z) f(x)取得最小值时,2x+π/3=(3π/2)+2kπ(k∈Z) 解得:x=kπ+(7π/12)(k∈Z) ③由②可知,当k=0时,[π/12,7π/12]恰好是从最大值到最小值的半个周期 满足f(x)=1有且仅有一个这样的x,所以令2sin(2x+π/3)=1,解得:x=π/4 ③如果不能理解,可以画一个f(x)==2sin(2x+π/3)在【π/12,7π/12】上的简图,结合图像就能求出来了! ∵4sinAsinB=3,4cosAcosB=1 ∴sinAsinB=3/4,cosAcosB=1/4 又∵cos2x=1-2sin²x ∴1-cos2x=2sin²x (1-cos4A)(1-cos4B)=2sin²2A·2sin²2B =4(sin2A·sin2B)² =4(2sinAcosA·2sinBcosB)² =9/4 ∵sinX+sinY=1/3 ∴sinX=1/3-sinY u=1/3-sinY-sin²Y 设sinY=t(-1≤t≤1) 则u=-t²-t+(1/3)(-1≤t≤1) =-(t+1/2)²+(1/12)(-1≤t≤1) 画图,由图像可知: u的最大值在t=-1/2处取得,Umax=1/12 u的最小值在t=1处取得,Umin=-13/6
页:
[1]