椭圆x2/a2+y2/b2=1(agt;bgt;0)的两个焦点F1,F2.点P在椭圆C上,且PF1垂直F1F2,PF=4/3,PF2=14/31)求椭圆方程2)若直线l过圆x2+y2+4x-2y=0的圆心M交椭圆A,B两点,且A,B关于点M对称,求直线l的方程.
<p>问题:椭圆x2/a2+y2/b2=1(agt;bgt;0)的两个焦点F1,F2.点P在椭圆C上,且PF1垂直F1F2,PF=4/3,PF2=14/31)求椭圆方程2)若直线l过圆x2+y2+4x-2y=0的圆心M交椭圆A,B两点,且A,B关于点M对称,求直线l的方程.<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">刘世岳的回答:<div class="content-b">网友采纳 (1)x^2/9+y^2/4=1(2)圆的方程可化为(x+2)^2+(y-1)^2=5.故圆心为(-2,1)令A(x1,y1)B(x2,y2),斜率为k,带入椭圆方程有(x1-x2)(x1+x2)/9=-(y1-y2)(y1+y2)/4即k=-4(x1+x2)/9(y1+y2)由M(-2,1)可得斜率k=8/9又直线过点M...
页:
[1]