已知向量m=(根号3,1),向量n=(cos(x/3),-sin(x/3)),记f(x)=2*向量m*向量n*sin(x/3)(1)若x∈[π/4,π],求函数f(x)的值域;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,且a,b,c成等比数列,若f(c)=1,求sinA的
<p>问题:已知向量m=(根号3,1),向量n=(cos(x/3),-sin(x/3)),记f(x)=2*向量m*向量n*sin(x/3)(1)若x∈[π/4,π],求函数f(x)的值域;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,且a,b,c成等比数列,若f(c)=1,求sinA的<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">董杰的回答:<div class="content-b">网友采纳 向量m.向量n=√3cos(x/3)-sin(x/3). f(x)=2m.n*sin(x/3). =2[√3cos(x/3)-sin(x/3)]sin(x/3). =2[√3sin(x/3)cos(x/3-sin^2(x/3)] =2{(√3/2)2sin(x/3)cos(x/3)-[(1-cos2x/3)/2]}. =2[(√3/2)sin(2x/3)+(1/2)cos(2x/3)]-1. ∴f(x)=2sin(2x/3+π/6)-1. (1)∵x∈[π/4,π],∴2x/3+π/6∈,sin(2x/3+π/6)在x∈[π/4,π/2]单调递增,在x∈[π/2,π],减. ∴sin(2x/3+π/6)在x=π/2处取得最大值1,即f(x)max=2*1-1=1.sin(2x/3+π/6)在x=π处取得最小值1/2.、 f(x)min=2*1/2-1=0. ∴f(x)在x∈[π/4,π],f(x)∈.---所求函数的值域. (2)∵f(C)=2sin(2C/3+π/6)=1.∴2C/3+π/6=π/2.2C/3=π/2-π/6=π/3,∴C=π/2. ∵三角形的三边a,b,c成等比数列,∴b^2=ac,. 由正弦定理,得;(sinB)^2=sinAsinC.∵sinC=sin90°=1.∴(sinB)^2=sinA.(1). (sinB)^2=^2 =sinAcosC+cosAsinC. =sinA*cos90°+cosAsin90°. ∴(sinB)^2=cosA.(2). ∵(1)=(2),∴sinA=cosA. sinA/cosA=1.(cosA≠0) tanA=1, ∴∠A=π/4.
页:
[1]