【高一诱导公式(sinA)^2/(sinB)^2+(cosA)^2*(cosC)^2=1,求证:(tanA)^2=(sinc)^2*(tanB)^2】
<p>问题:【高一诱导公式(sinA)^2/(sinB)^2+(cosA)^2*(cosC)^2=1,求证:(tanA)^2=(sinc)^2*(tanB)^2】<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">娄颖的回答:<div class="content-b">网友采纳 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)sec(2kπ+α)=secα(k∈Z)csc(2kπ+α)=cscα(k∈Z)角度制下的角的表示:sin(α+k·360°)=sinα(k∈Z)cos(α+k·360°)=cosα(k∈Z)tan(α+k·360°)=tanα(k∈Z)cot(α+k·360°)=cotα(k∈Z)sec(α+k·360°)=secα(k∈Z)csc(α+k·360°)=cscα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsec(π+α)=-secαcsc(π+α)=-cscα角度制下的角的表示:sin(180°+α)=-sinαcos(180°+α)=-cosαtan(180°+α)=tanαcot(180°+α)=cotαsec(180°+α)=-secαcsc(180°+α)=-cscα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsec(-α)=secαcsc(-α)=-cscα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:弧度制下的角的表示:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsec(π-α)=-secαcsc(π-α)=cscα角度制下的角的表示:sin(180°-α)=sinαcos(180°-α)=-cosαtan(180°-α)=-tanαcot(180°-α)=-cotαsec(180°-α)=-secαcsc(180°-α)=cscα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:弧度制下的角的表示:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsec(2π-α)=secαcsc(2π-α)=-cscα角度制下的角的表示:sin(360°-α)=-sinαcos(360°-α)=cosαtan(360°-α)=-tanαcot(360°-α)=-cotαsec(360°-α)=secαcsc(360°-α)=-cscα小结:以上五组公式可简记为:函数名不变,符号看象限.即α+k·360°(k∈Z),-α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号.公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:(⒈~⒋)⒈π/2+α与α的三角函数值之间的关系弧度制下的角的表示:sin(π/2+α)=cosαcos(π/2+α)=—sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsec(π/2+α)=-cscαcsc(π/2+α)=secα角度制下的角的表示:sin(90°+α)=cosαcos(90°+α)=-sinαtan(90°+α)=-cotαcot(90°+α)=-tanαsec(90°+α)=-cscαcsc(90°+α)=secα⒉π/2-α与α的三角函数值之间的关系弧度制下的角的表示:sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsec(π/2-α)=cscαcsc(π/2-α)=secα角度制下的角的表示:sin(90°-α)=cosαcos(90°-α)=sinαtan(90°-α)=cotαcot(90°-α)=tanαsec(90°-α)=cscαcsc(90°-α)=secα⒊3π/2+α与α的三角函数值之间的关系弧度制下的角的表示:sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsec(3π/2+α)=cscαcsc(3π/2+α)=-secα角度制下的角的表示:sin(270°+α)=-cosαcos(270°+α)=sinαtan(270°+α)=-cotαcot(270°+α)=-tanαsec(270°+α)=cscαcsc(270°+α)=-secα⒋3π/2-α与α的三角函数值之间的关系弧度制下的角的表示:sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsec(3π/2-α)=-cscαcsc(3π/2-α)=-secα角度制下的角的表示:sin(270°-α)=-cosαcos(270°-α)=-sinαtan(270°-α)=cotαcot(270°-α)=tanαsec(270°-α)=-cscαcsc(270°-α)=-secα温馨提示:1.在做题目的时候,最好将α看成是锐角.2.k∈Z
页:
[1]