(x-siny)dy+tanydx=0求通解,
<p>问题:(x-siny)dy+tanydx=0求通解,<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">乔月圆的回答:<div class="content-b">网友采纳 ∵(x-siny)dy+tanydx=0 ==>xcosydy+sinydx-sinycosydy=0(等式两端同乘cosy) ==>d(xsiny)-d((siny)^2/2)=0 ==>xsiny-(siny)^2/2=C(C是常数) ==>x=siny/2+C/siny ∴原方程的通解是x=siny/2+C/siny.<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">万雅竞的回答:<div class="content-b">网友采纳 不对啊,答案是C(siny)^2-2xsiny=1,用z=siny换元做<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">乔月圆的回答:<div class="content-b">网友采纳 我的答案是正确的,验证如下: ∵x=siny/2+C/siny(C是常数) ==>dx=cosydy/2-Ccosydy/(siny)^2,x-siny=C/siny-siny/2 ∴(x-siny)dy+tanydx=(C/siny-siny/2)dy+tany(cosydy/2-Ccosydy/(siny)^2) =(Cdy/siny-sinydy/2)+(sinydy/2-Cdy/siny) =0 故x=siny/2+C/siny是方程(x-siny)dy+tanydx=0的通解。
页:
[1]