meili 发表于 2022-10-27 15:56:18

几道分式方程的题解方程:1/(x-1)(X-2)=1/(X-4)(X-5)X/(X-1)-(X-1)/(X-2)=(x-3)/(x-4)-(x-4)/(X-5)

<p>问题:几道分式方程的题解方程:1/(x-1)(X-2)=1/(X-4)(X-5)X/(X-1)-(X-1)/(X-2)=(x-3)/(x-4)-(x-4)/(X-5)
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">宋培华的回答:<div class="content-b">网友采纳  第一题:  1/(x-1)(x-2)=1/(x-4)(x-5)  1/x²-2x-x+2=1/x²-5x-4x+20  1/x²-3x+2=1/x²-9x+20  ∵分子相等,∴分母相等  x²-3x+2=x²-9x+20  6x=18  x=3  经检验,x=3是方程的根  第二题:  x/(x-1)-(x-1)/(x-2)=(x-3)/(x-4)-(x-4)/(x-5)  x/x-1-x-1/x-2=x-3/x-4-x-4/x-5  x(x-2)(x-4)(x-5)-(x-1)²(x-4)(x-5)/=(x-1)(x-2)(x-3)(x-5)/-(x-1)(x-2)(x-4)²  (x²-2x)(x²-9x+20)-(x²-2x+1)(x²-9x+20)=(x²-3x+2)(x²-8x+15)-(x²-3x+2)(x²-8x+16)  (x^4-11x³+38x²-40x)-(x^4-11x³+39x²-49x+20)=(x^4-11x³+41x²-61x+30)-(x^4-11x³+42x²-64x+32)  x^4-11x³+38x²-40x-x^4+11x³-39x²+49x-20=x^4-11x³+41x²-61x+30-x^4+11x³-42x²+64x-32  -x²+9x-20=3x-x²-2  6x=18  x=3  经检验,x=3是方程的根
页: [1]
查看完整版本: 几道分式方程的题解方程:1/(x-1)(X-2)=1/(X-4)(X-5)X/(X-1)-(X-1)/(X-2)=(x-3)/(x-4)-(x-4)/(X-5)