meili 发表于 2022-10-27 15:55:17

y#39;#39;-2yy#39;3(三次方)=0y#39;(0)=-1y(0)=1解初值(可降价的高阶微分方程)

<p>问题:y#39;#39;-2yy#39;3(三次方)=0y#39;(0)=-1y(0)=1解初值(可降价的高阶微分方程)
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">罗付华的回答:<div class="content-b">网友采纳  ∵令y'=p,则y"=pdp/dy  代入原方程,得pdp/dy-2yp^3=0  ==>p(dp/dy-2yp^2)=0  ∴p=0,或dp/dy-2yp^2=0  ∵p=0不满足初始条件,舍去  ∴dp/dy-2yp^2=0  ==>dp/p^2=2ydy  ==>-1/p=y^2-C1(C1是常数)  ==>-1/y'=y^2-C1  ==>-dx/dy=y^2-C1  ==>dx=-y^2+C1  ==>x=C1y-y^3/3+C2(C2是常数)  ∵y(0)=1,y'(0)=-1  ∴代入x=C1y-y^3/3+C2,得C1=0,C2=1/3  故原方程满足初始条件的特解是x=(1-y^3)/3.
页: [1]
查看完整版本: y#39;#39;-2yy#39;3(三次方)=0y#39;(0)=-1y(0)=1解初值(可降价的高阶微分方程)