【如图,直线l与抛物线y2=x交于A(x1,y1),B(x2,y2)两点,与x轴相交于点M,且y1y2=-1.(1)求证:M点的坐标为(1,0);(2)求证:OA⊥OB;(3)求△AOB的面积的最小值.】
<p>问题:【如图,直线l与抛物线y2=x交于A(x1,y1),B(x2,y2)两点,与x轴相交于点M,且y1y2=-1.(1)求证:M点的坐标为(1,0);(2)求证:OA⊥OB;(3)求△AOB的面积的最小值.】<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">侯琳祺的回答:<div class="content-b">网友采纳 (1)设M点的坐标为(x0,0),直线l方程为x=my+x0,代入y2=x得y2-my-x0=0①,y1,y2是此方程的两根,∴x0=-y1y2=1,即M点的坐标为(1,0).(2)∵y1y2=-1,∴x1x2+y1y2=y12y22+y1y2=y1y2(y1y2+1)=0∴OA⊥OB.(...
页:
[1]