meili 发表于 2022-10-27 15:51:16

求下列一阶线性微分方程的解(1)y#39;=1/(x+siny)(2)(x-siny)dy+tanydx=0,y(1)=π/6求下列一阶线性微分方程的解(1)y#39;=1/(x+siny)(2)(x-siny)dy+tanydx=0,y(1)=π/6

<p>问题:求下列一阶线性微分方程的解(1)y#39;=1/(x+siny)(2)(x-siny)dy+tanydx=0,y(1)=π/6求下列一阶线性微分方程的解(1)y#39;=1/(x+siny)(2)(x-siny)dy+tanydx=0,y(1)=π/6
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">韩泽生的回答:<div class="content-b">网友采纳  (1)y'=1/(x+siny)==>dx/dy=x+siny  先求dx/dy=x的通解  ∵dx/dy=x==>dx/x=dy  ==>ln│x│=y+ln│C│(C是积分常数)  ==>x=Ce^y  ∴dx/dy=x的通解是x=Ce^y  于是,设dx/dy=x+siny的通解为x=C(y)e^y(C(y)是关于y的函数)  ∵dx/dy=C'(y)e^y+C(y)e^y  代入得C'(y)e^y+C(y)e^y=C(y)e^y+siny  ==>C'(y)e^y=siny  ==>C'(y)=siny*e^(-y)  ∴C(y)=∫siny*e^(-y)dy  =-e^(-y)(siny+cosy)/2+C(应用分部积分法,C是积分常数)  x=[-e^(-y)(siny+cosy)/2+C]e^y  =Ce^y-(siny+cosy)/2  故原微分方程的通解是x=Ce^y-(siny+cosy)/2(C是积分常数).  (2)(x-siny)dy+tanydx=0==>(x-siny)dy+sinydx/cosy=0  ==>dx/dy+xcosy/siny=cosy  先求dx/dy+xcosy/siny=0的通解  ∵dx/dy+xcosy/siny=0==>dx/x=-cosydy/siny  ==>dx/x=-d(siny)/siny  ==>ln│x│=-ln│siny│+ln│C│(C是积分常数)  ==>x=C/siny  ∴dx/dy+xcosy/siny=0的通解是x=C/siny  于是,设dx/dy+xcosy/siny=cosy的通解为x=C(y)/siny(C(y)是关于y的函数)  ∵dx/dy=/sin²y  代入得C‘(y)/siny=cosy  ==>C‘(y)=sinycosy=sin(2y)/2  ∴C(y)=∫sin(2y)dy/2  =-cos(2y)/4+C(C是积分常数)  x=/siny  ∴dx/dy+xcosy/siny=cosy的通解是x=/siny(C是积分常数)  ∵y(1)=π/6  ∴(C-1/8)/(1/2)=1==>C=5/8  ∴x=/(8siny)  故(x-siny)dy+tanydx=0满足初始条件y(1)=π/6的特解是x=/(8siny).
页: [1]
查看完整版本: 求下列一阶线性微分方程的解(1)y#39;=1/(x+siny)(2)(x-siny)dy+tanydx=0,y(1)=π/6求下列一阶线性微分方程的解(1)y#39;=1/(x+siny)(2)(x-siny)dy+tanydx=0,y(1)=π/6