meili 发表于 2022-10-27 15:50:30

【用拉普拉斯变换解常系数线性微分方程的初值问题,有哪些优点?】

<p>问题:【用拉普拉斯变换解常系数线性微分方程的初值问题,有哪些优点?】
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">蒋太杰的回答:<div class="content-b">网友采纳  运用拉氏变换解常系数线性微分方程的初值问题,我认为具有如下优点:  (1)求解过程规范化,便于在工程技术中应用.  (2)因为取拉氐变换时连带初始条件,所以它比经典法(指高等数学中常微分方程的解法)使捷.  (3)当初始条件全部为零时(这在工程中是常见的),用拉氏变换求解特别简便.  (4)当方程中非齐次项(工程中称输入函数)因具跳跃点而不可微时(工程中也常见),用经典法求解是很困难的,而用拉氏变换求解却不会因此带来任何困难.
页: [1]
查看完整版本: 【用拉普拉斯变换解常系数线性微分方程的初值问题,有哪些优点?】