meili 发表于 2022-10-27 15:50:05

求微积分y#39;#39;=3/2y^2满足初始条件y|(x=0)=1,y#39;|(x=0)=1的特解.

<p>问题:求微积分y#39;#39;=3/2y^2满足初始条件y|(x=0)=1,y#39;|(x=0)=1的特解.
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">潘庆谊的回答:<div class="content-b">网友采纳  令y'=p(y),则y''=p'(y)*dy/dx=p'p,则原方程化为:p'p=3/2y²,则pdp=3/2y²dy两边积分得:1/2p²=1/2y³+C1由x=0时,y=1,y'=1,即p=1,代入上式得:C1=0则:p²=y³,则p=y^(3/2)即:dy/dx=y^(3/...
页: [1]
查看完整版本: 求微积分y#39;#39;=3/2y^2满足初始条件y|(x=0)=1,y#39;|(x=0)=1的特解.