【已知:如图,在Rt△ABC中,∠ACB=90°,点P是边AB上的一个动点,联结CP,过点B作BD⊥CP,垂足为点D.(1)如图1,当CP经过△ABC的重心时,求证:△BCD∽△ABC.(2)如图2,若BC=2厘米,cotA=2,点P从点A向点B运动(不】
<p>问题:【已知:如图,在Rt△ABC中,∠ACB=90°,点P是边AB上的一个动点,联结CP,过点B作BD⊥CP,垂足为点D.(1)如图1,当CP经过△ABC的重心时,求证:△BCD∽△ABC.(2)如图2,若BC=2厘米,cotA=2,点P从点A向点B运动(不】<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">马新的回答:<div class="content-b">网友采纳 (1)当CP经过△ABC的重心时CP是AB边上的中线因为,∠ACB=90°所以CP=BP=AP所以∠PCB=∠PBC因为BD⊥CP,垂足为点D所以∠BDC=∠ACB=90°所以:△BCD∽△ABC.(2)若BC=2厘米,cotA=2,则AC=4厘米,AB=2根号5厘米过点D作DE⊥...
页:
[1]