meili 发表于 2022-10-27 15:46:31

【△ABC,AB=AC为边分别向外做等腰直角△ABE和等腰直角△ACF∠EAB=∠FAC=90°AH是△ABC的高延长HA交EF于G探究线段CE,GF数量关系】

<p>问题:【△ABC,AB=AC为边分别向外做等腰直角△ABE和等腰直角△ACF∠EAB=∠FAC=90°AH是△ABC的高延长HA交EF于G探究线段CE,GF数量关系】
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">彭存银的回答:<div class="content-b">网友采纳  首先,根据题意,我们令∠BAC=a,AB=AC=AE=AF=m.然后,以A点为圆心,m的长度为半径画圆.则圆A是四边形CBEF的外接圆.∠BEC=(1/2)∠BAC=(1/2)a∠EAM=∠BEA-∠BEC=45°-(1/2)a∠CAH+∠FAG=180°-∠CAF=90°而∠CAH+∠CHA=...
页: [1]
查看完整版本: 【△ABC,AB=AC为边分别向外做等腰直角△ABE和等腰直角△ACF∠EAB=∠FAC=90°AH是△ABC的高延长HA交EF于G探究线段CE,GF数量关系】