在△ABC中,若AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE⊥AB,垂足为E,DF⊥AC,垂足为F(如图(1)),则可以得到以下两个结论:①∠AED+∠AFD=180°;②DE=DF.那么在△ABC中,仍然有
<p>问题:在△ABC中,若AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE⊥AB,垂足为E,DF⊥AC,垂足为F(如图(1)),则可以得到以下两个结论:①∠AED+∠AFD=180°;②DE=DF.那么在△ABC中,仍然有<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">梅树朋的回答:<div class="content-b">网友采纳 (1)DE=DF.理由如下:过点D作DM⊥AB于M,DN⊥AC于N,∵AD平分∠BAC,DM⊥AB,DN⊥AC,∴DM=DN,∵∠AED+∠AFD=180°,∠AFD+∠DFN=180°,∴∠DFN=∠AED,∴△DME≌△DNF(AAS),∴DE=DF;(2)不一定成立.如图...
页:
[1]