meili 发表于 2022-10-27 15:41:58

如图1,AB是圆O的直径,点C在AB的延长线上,AB=4,BC=2,P是圆O上半部分的一个动点,连接OP,CP.(1)求△OPC的最大面积;(2)求∠OCP的最大度数;设∠OCP=α,当线段CP与圆O只有一个公共点

<p>问题:如图1,AB是圆O的直径,点C在AB的延长线上,AB=4,BC=2,P是圆O上半部分的一个动点,连接OP,CP.(1)求△OPC的最大面积;(2)求∠OCP的最大度数;设∠OCP=α,当线段CP与圆O只有一个公共点
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">洪文学的回答:<div class="content-b">网友采纳  (1)∵AB=4,∴OB=2,OC=OB+BC=4.在△OPC中,设OC边上的高为h,∵S△OPC=12OC•h=2h,∴当h最大时,S△OPC取得最大值.观察图形,当OP⊥OC时,h最大,如答图1所示:此时h=半径=2,S△OPC=2×2=4.∴△OPC的最大面...
页: [1]
查看完整版本: 如图1,AB是圆O的直径,点C在AB的延长线上,AB=4,BC=2,P是圆O上半部分的一个动点,连接OP,CP.(1)求△OPC的最大面积;(2)求∠OCP的最大度数;设∠OCP=α,当线段CP与圆O只有一个公共点