如图,在△ABC中,∠C=45amp;deg;,BC=10,高AD=8,矩形EFPQ的一边QP在边上,E、F两点分别在AB、AC上,AD交EF于点H.(1)求证:;(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值
<p>问题:如图,在△ABC中,∠C=45amp;deg;,BC=10,高AD=8,矩形EFPQ的一边QP在边上,E、F两点分别在AB、AC上,AD交EF于点H.(1)求证:;(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">林笠的回答:<div class="content-b">网友采纳 分析: (1)易证得△AEF∽△ABC,而AH、AD是两个三角形的对应高,EF、BC是对应边,它们的比都等于相似比,由此得证;(2)此题要转化为函数的最值问题来求解;由(1)的结论可求出AH的表达式,进而可得到HD(即FP)的表达式;已求得了矩形的长和宽,即可根据矩形的面积公式得到关于矩形EFPQ的面积和x的函数关系式,根据函数的性质即可得到矩形的最大面积及对应的x的值;(3)此题要理清几个关键点,当矩形的面积最大时,由(2)可知此时EF=5,EQ=4;易证得△CPF是等腰Rt△,则PC=PF=4,QC=QP+PC=9;一、P、C重合时,矩形移动的距离为PC(即4),运动的时间为4s;二、E在线段AC上时,矩形移动的距离为9-4=5,运动的时间为5s;三、Q、C重合时,矩形运动的距离为QC(即9),运动的时间为9s;所以本题要分三种情况讨论:①当0≤t<4时,重合部分的面积是矩形EFPQ与等腰Rt△FMN(设AC与FE、FP的交点为M、N)的面积差,FM的长即为梯形移动的距离,由此可得到S、t的函数关系式;②当4≤t<5时,重合部分是个梯形,可用t表示出梯形的上下底,进而由梯形的面积公式求得S、t的函数关系式;③当5≤t≤9时,重合部分是个等腰直角三角形,其直角边的长易求得,即可得出此时S、t的函数关系式. (1)证明:∵四边形EFPQ是矩形,∴EF∥QP∴△AEF∽△ABC又∵AD⊥BC,∴AH⊥EF;∴=;(2)由(1)得=,∴AH=x∴EQ=HD=AD-AH=8-x∴S矩形EFPQ=EF•EQ=x(8-x)=-x2+8x=-(x-5)2+20∵-<0,∴当x=5时,S矩形EFPQ有最大值,最大值为20;(3)如图1,由(2)得EF=5,EQ=4∵∠C=45°,△FPC是等腰直角三角形.∴PC=FP=EQ=4,QC=QP+PC=9分三种情况讨论:①如图2,当0≤t<4时,设EF、PF分别交AC于点M、N,则△MFN是等腰直角三角形;∴FN=MF=t∴S=S矩形EFPQ-SRt△MFN=20-t2=-t2+20②如图3当4≤t<5时,则ME=5-t,QC=9-t,∴S=S梯形EMCQ=[(5-t)+(9-t)]×4=-4t+28③如图4当5≤t≤9时,设EQ交AC于点K,则KQ=QC=9-t∴S=S△KQC=(9-t)2=(t-9)2综上所述:S与t的函数关系式为:S=. 点评: 此题主要考查了矩形、等腰直角三角形的性质,相似三角形的判定和性质及二次函数的应用等知识,同时还考查了分类讨论的数学思想.
页:
[1]