设平面图形A由x^2+y^2=x确定,求该平面图形的面积及其绕直线x=2旋转一周所得的旋转体的体积,尽快啊……
<p>问题:设平面图形A由x^2+y^2=x确定,求该平面图形的面积及其绕直线x=2旋转一周所得的旋转体的体积,尽快啊……<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">杜如彬的回答:<div class="content-b">网友采纳 解法一(以x为积分变量求解): ∵(自己作图)x²+y²=2x与y=x的交点是(0,0)与(1,1) ∴所求面积=∫[√(2x-x²)-x]dx =∫√(1-(x-1)²)dx-∫xdx =∫cos²tdt-1/2(在第一个积分中,令x-1=sint) =∫[(1+cos(2t))/2]dt-1/2 =π/4-1/2 所求体积=∫2π(2-x)[√(2x-x²)-x]dx =2π[∫(2-x)√(1-(x-1)²)dx-∫(2x-x²)dx =2π[∫(1-sint)cos²tdt-(1-1/3)](在第一个积分中,令x-1=sint) =2π[∫(1/2+cos(2t)/2-sintcos²t)dt-2/3] =2π[(1/3+π/4)-2/3] =π²/2-2π/3 解法二(以y为积分变量求解): ∵(自己作图)x²+y²=2x与y=x的交点是(0,0)与(1,1) ∴所求面积=∫dy =∫√(1-y²)dy+∫(y-1)dy =∫cos²tdt+(1/2-1)(在第一个积分中,令y=sint) =∫(1/2+cos(2t)/2)dt-1/2 =π/4-1/2 所求体积=∫π[(1+√(1-y²))²-(2-y)²]dy =2π∫[√(1-y²)-(1-2y+y²)]dy =2π[∫√(1-y²)dy-∫(1-2y+y²)dy] =2π[∫cos²tdt-(1-1+1/3)](在第一个积分中,令y=sint) =2π[∫(1/2+cos(2t)/2)dt-1/3] =2π(π/4-1/3) =π²/2-2π/3
页:
[1]