几个三角函数问题1.已知函数y=αcos(2x+π/3)+3,x∈[0,π/2]的最大值为4,求实数α的值2.化简下列各式(1)【sin^3(π+α)cos(-α)cos(π-α)】/【tan^3(π+α)cos^3(-α-π)】+【cos(α+3π)sin^2(α+3π)cos^2(3π/2α)】/【ta
<p>问题:几个三角函数问题1.已知函数y=αcos(2x+π/3)+3,x∈的最大值为4,求实数α的值2.化简下列各式(1)【sin^3(π+α)cos(-α)cos(π-α)】/【tan^3(π+α)cos^3(-α-π)】+【cos(α+3π)sin^2(α+3π)cos^2(3π/2α)】/【ta<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">高剑峰的回答:<div class="content-b">网友采纳 1、因为x∈;所以(2x+π/3)∈[π/3,4π/3];所以cos(2x+π/3)∈[-1,(√3)/3];因为y=αcos(2x+π/3)+3的最大值为4所以αcos(2x+π/3)的最大值为1当α>0时αcos(2x+π/3)∈[-α,(√3)/3α];...
页:
[1]