meili 发表于 2022-10-27 15:25:06

【求特殊型的一元三次方程的求根公式啊!形如ax^3+bx+c=0X^3+pX+q=0(p、q∈R)【卡尔丹公式】X1=(Y1)^(1/3)+(Y2)^(1/3);X2=(Y1)^(1/3)ω+(Y2)^(1/3)ω^2;X3=(Y1)^(1/3)ω^2+(Y2)^(1/3)ω,其中ω=(-1+i3^(1/2))/2;Y1,】

<p>问题:【求特殊型的一元三次方程的求根公式啊!形如ax^3+bx+c=0X^3+pX+q=0(p、q∈R)【卡尔丹公式】X1=(Y1)^(1/3)+(Y2)^(1/3);X2=(Y1)^(1/3)ω+(Y2)^(1/3)ω^2;X3=(Y1)^(1/3)ω^2+(Y2)^(1/3)ω,其中ω=(-1+i3^(1/2))/2;Y1,】
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">盛大树的回答:<div class="content-b">网友采纳  先找个解(基本都能找到一般在10以内)  再用配凑法配出另一因式的二次项一次项常数项<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">陈增强的回答:<div class="content-b">网友采纳  不是有什么卡尔丹公式吗?就是这个Y(1,2)=-(q/2)±((q/2)^2+(p/3)^3)^(1/2)。不懂<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">盛大树的回答:<div class="content-b">网友采纳  (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为x^3=(A+B)+3(AB)^(1/3)x,移项可得(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得(6)A+B=-q,AB=-(p/3)^3(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即(8)y1+y2=-(b/a),y1*y2=c/a(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a(10)由于型为ay^2+by+c=0的一元二次方程求根公式为y1=-(b+(b^2-4ac)^(1/2))/(2a)y2=-(b-(b^2-4ac)^(1/2))/(2a)可化为(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)(13)将A,B代入x=A^(1/3)+B^(1/3)得(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)式(14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。
页: [1]
查看完整版本: 【求特殊型的一元三次方程的求根公式啊!形如ax^3+bx+c=0X^3+pX+q=0(p、q∈R)【卡尔丹公式】X1=(Y1)^(1/3)+(Y2)^(1/3);X2=(Y1)^(1/3)ω+(Y2)^(1/3)ω^2;X3=(Y1)^(1/3)ω^2+(Y2)^(1/3)ω,其中ω=(-1+i3^(1/2))/2;Y1,】