f(x)有二阶连续导数大于0F(0)=F#39;(0)=0u是f(x)在(x,f(x))处切线在x轴截距,求lim(x→0)xf(u)/uf(x)
<p>问题:f(x)有二阶连续导数大于0F(0)=F#39;(0)=0u是f(x)在(x,f(x))处切线在x轴截距,求lim(x→0)xf(u)/uf(x)<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">彭宏韬的回答:<div class="content-b">网友采纳 由题可知,f(x)=ax²+o(x²) u=x-f(x)/f'(x) limu/x=lim 而limf(x)/xf'(x)=limf'(x)/=limf''(x)/=f''(0)/(2f''(0)+0)=1/2,所以limu/x=1/2 且limf(u)/f(x)=lim/=limu²/x²=1/4 所以原式=/(limu/x)=1/2
页:
[1]