设二阶可导函数fx满足f(0)=0,f(0)的导数=1,且f(x)的二阶导数gt;0.证明:f(x≥x
<p>问题:设二阶可导函数fx满足f(0)=0,f(0)的导数=1,且f(x)的二阶导数gt;0.证明:f(x≥x<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">罗沄的回答:<div class="content-b">网友采纳 F(x)=f(x)-xF'(x)=f'(x)-1F'(0)=f'(0)-1=1-1=0F''(x)=f''(x)>0所以F'(x)>F'(0)=0所以F(x)有最小值是0点F(0)=f(0)-0=0所以F(x)>=0f(x)-x>=0f(x)>=x但是应该有个定义域(x>=0)...
页:
[1]