【已知抛物线y=ax^2+bx+c经过点A(-1,0),B(3,0)C(0,3)三点,直线L是抛物线的对称轴.(2)设点P是直线L上的一个动点,当三角形PAC的周长最小时,求点P的坐标(3)在直线L上是否存在点M,使三角形MA】
<p>问题:【已知抛物线y=ax^2+bx+c经过点A(-1,0),B(3,0)C(0,3)三点,直线L是抛物线的对称轴.(2)设点P是直线L上的一个动点,当三角形PAC的周长最小时,求点P的坐标(3)在直线L上是否存在点M,使三角形MA】<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">秦晓卫的回答:<div class="content-b">网友采纳 (2)由A、B、C三点可得,抛物线的解析式为:y=-2x^2+5x+3;由于P在对称轴L上,所以设P为(1,y)当三角形PAC周长C最短时,即AP+PC+AC的和最短,即C=|AC|+|PA|+|PC|=(3)有两个点.①AC为边,此时另一点为L与x轴的交点;②AC...
页:
[1]