meili 发表于 2022-10-27 15:03:45

【已知函数f(x)=e^x,直线l的方程为y=kx+b⑴若直线l是曲线y=f(x)的切线,求证:f(x)≥kx+b对任意x∈R成立;⑵若f(x)≥kx+b对任意x∈R成立,求实数k、b应满足的条件.】

<p>问题:【已知函数f(x)=e^x,直线l的方程为y=kx+b⑴若直线l是曲线y=f(x)的切线,求证:f(x)≥kx+b对任意x∈R成立;⑵若f(x)≥kx+b对任意x∈R成立,求实数k、b应满足的条件.】
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">莫德敏的回答:<div class="content-b">网友采纳  (1)从几何的角度不难看出,f(x)是下凸函数,故其切线总是位于f(x)图象的下方,显然有f(x)≥kx+b成立.下面从代数的角度证明:设任一切点坐标为(m,e^m)l:y-e^m=e^m(x-m),即y=(x-m+1)e^m设g(x)=f(x)-(x-m+1)·e^m=e^x-(x...
页: [1]
查看完整版本: 【已知函数f(x)=e^x,直线l的方程为y=kx+b⑴若直线l是曲线y=f(x)的切线,求证:f(x)≥kx+b对任意x∈R成立;⑵若f(x)≥kx+b对任意x∈R成立,求实数k、b应满足的条件.】